文章正文

诗词 散文 小说 杂文 校园 文苑 历史 人物 人生 生活 幽默 美文 资源中心小说阅读归一云思

筛法在实际应用的探讨

时间:2023/11/9 作者: 山东青年 热度: 15199
梁增勇

  摘 要:

  在研究质数的问题中常常运用到筛法计算质数的个数。本文介绍用更苛刻的筛除法求出质数对的可靠下限,同时用函数等数学分析的方法进行分析,即可解决这类性质的关键问题。

  关键词:集合;函数;筛法;整数对;数学分析

  一、本文使用的数学符号的定义:

  全体非负整数的集合通常简称非负整数集(或自然数集),记作N[1]。本文中

  A表示[1,n]区间正整数的集合,即A ={1,2,3,…,n}, 集合A的元素个数记为card (A);

  A\-p为含有p素因子倍数的子集, 即A\-p ={1p,2p,3p, 4p, 5p,……}, A\-\{2,3\}={2,3,4,6,8,9},(n=10) ;

  B\-p 为集合A不含p素因子合数子集(除了2),例如B\-2是奇数的子集, B\-\{2,3\}={1,3,5,7},(n=10);

  P表示素数的集合,p或p\-m 表示素数,即P={2,3,5,7,11,13,……, p, ……,} 或 P = {p\-1 , p\-2 , p\-3 ,…, p\-m ,…},

  ф(n)为欧拉函数,ф′(n)、h(n)为非合数个数的下限函数。d(n)为质数对个数的下限函数。

  容斥原理是在组合数学中应用颇为广泛的一个工具,它常使用到容斥公式[2]。例如:

  例1 设A是一个由整数组成的有限集合,d\-1, d\-2, …, d\-m 是给定的正整数,再设A\-d 表A中被正整数d整除的元素组成的子集,那么,A中不能被任一dj(1≤j≤m)整除的元素的个数等于

  |A | -Σ1≤i≤m|Ad\-i| + Σ1≤i≤j≤m|Ad\-j∩ Ad\-j |-… + (-1)\+\{m-1\} | Ad\-1∩ Ad\-2∩…∩Ad\-m|

  由于取整運算十分是复杂, 仅可以在小范围内计算。对于更大范围的数据运算是无能为力的。下面我们介绍运用筛法、函数和数学分析解决这类性质的问题的几个对策和方法。

  1、质数个数的下限函数

  引理1[2]. 若p为任一质数,A\-p 为n个连续自然数中含质数p的所有倍数的集合,则

  card(A\-p)≤np]= [kn+rp]=k ≤np = k+rp,因为 (rp ≥0) , 所以 card(A\-p)≤np 。

  定理1. 若p为任一质数,B\-p 为n个连续自然数筛除去质数p的所有合数的集合,则

  Card(B\-p)≥n(1-1p )。

  证 由引理1得,card(A\-p) ≤np ,则card(B\-p)=n-card(A\-p)≥n-np = n(1-1p

  )。

  引理2 (Euler函数)[3] 若 n含任意质数p\-i、p\-j、……p\-k 之因子,则 ф(n)= n (1-np\-i ) (1-np\-j)…(1-np\-k) (1)

  定理2. 若2,3,…,p\-i为质数,p\-i≤(2)

  证 由引理2 可知, 函数φ(n) 是当n为2×3×5×……×p\-k 时可计算得之准确值,当n与上述整数有互素的情况,因函数ф(n)转为ф′(n) ,由定理1可知每个因子(1-n22P\-1 ) ( 1-2P\-22P\-i )(3)

  证 集合H的2n自然数可排成上、下两行组成n个相同性质的对偶数对,并筛除所有含合数的对偶数对。根据定理2,仅筛除上行含合数的对偶数对,余下个数为 card(B\-\{2,3,…,P\-\{i+1\}\} )≥ф′(n)= n (1-13)…(1-1P\-i)

  再考虑对带奇合数对偶数重复筛除一次,即将括弧中1/p\-i改为2/p\-i,得到

  card(B\-\{2,3,…,P\-\{i+1\}\})≥d(n)= n(1-23)…(1-2P\-i)

  此即所谓重复筛除法,函数d(n)必然小于或等于非合性质元素对偶数对个数的实际值card(D), 即

  card(D) ≥d(n) = n2( 1-2P\-2) ( 1-2P\-2 )…( 1-2P\-i)

  定理4 令N′为N之子集 ,card(N′)=2n ,2n≤p\-m\+2+1, 那么当

  n2Πmi=2(1-2P\-i)≥4(4)

  成立,必定有一对或一对以上的同性质(例如相关质数)对偶数对存在。

  证 已知N′的元素排列成n组同性质对偶数。由定理3可知,集合D已经不含任何的合数,d(n)为集合D元素个数的下限函数。 那么,当d(n) ≥ 4 ( 取保守一点) ),可组成至少两对对偶数(可能有一对含数1)这样,至少 有一对或一对以上对偶数对全是同性质整数存在。

  定理5 令N′为N之子集 ,card(N′)=2n ,2n≤p\-m\+2+1, 则

  (5)

  证 对m使用数学归纳法[2]:1)当 m=6, n=170,d(n′)= [参考文献]

  [1] 同济大学应用数学系主编 . 高等数学.[M]高等教育出版社,1978 :1-23.

  [2]潘承洞,潘承彪. 初等数论. [M]北京大学出版社, 2003:71-76.

  [3]G.H.Hardy,E.M.Wright,An Introduction to the Theory of Numbers.[M].人民邮电出版社, 2007:52-53.

  (作者单位:广西妇幼保健院,广西 南宁 530000)endprint
赞(0)


猜你喜欢

推荐阅读

参与评论

0 条评论
×

欢迎登录归一原创文学网站

最新评论